à bifurcation - vertaling naar Engels
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

à bifurcation - vertaling naar Engels

AREA OF MATHEMATICS
Bifurcation Theory; Bifurcation (dynamical systems); Heteroclinic bifurcation; Homoclinic bifurcation; Infinite-period bifurcation; Infinite period bifurcation; Global bifurcation; Local bifurcations; Local bifurcation; Global bifurcations; Bifurcation point
  • Period-halving bifurcations (L) leading to order, followed by period doubling bifurcations (R) leading to chaos.
  • Phase portrait showing saddle-node bifurcation

à bifurcation      
forked

Definitie

bifurcate
(bifurcates, bifurcating, bifurcated)
If something such as a line or path bifurcates or is bifurcated, it divides into two parts which go in different directions.
The blood supply bifurcates between eight and thirty times before reaching each particular location in the body.
VERB: V, also V n
bifurcation (bifurcations)
...the bifurcation between high art and popular culture.
N-VAR

Wikipedia

Bifurcation theory

Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations. Most commonly applied to the mathematical study of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behavior. Bifurcations occur in both continuous systems (described by ordinary, delay or partial differential equations) and discrete systems (described by maps).

The name "bifurcation" was first introduced by Henri Poincaré in 1885 in the first paper in mathematics showing such a behavior. Henri Poincaré also later named various types of stationary points and classified them with motif.